بتوقيت بيروت - 9/7/2025 6:30:45 AM - GMT (+2 )


Curta, F. The Making of the Slavs: History and Archaeology of the Lower Danube Region, C. 500–700, Vol. 52 (Cambridge Univ. Press, 2001).
Pohl, W. The Avars: A Steppe Empire in Central Europe, 567–822 (Cornell Univ. Press, 2018).
Dulinicz, M. & Moździoch, S. The Early Slavic Settlement in Central Europe in the Light of New Dating Evidence, Vol. 3 (Institute of Archaeology and Ethnology of the Polish Academy of Sciences, 2013).
Parczewski, M. Die Anfänge Der Frühslawischen Kultur in Polen, Vol. 17 (Österreichische Gesellschaft für Ur- und Frühgeschichte, Wien, 1993).
Kazanski, M. in Encyclopedia of Slavic Languages and Linguistics Online (ed. Greenberg, M. L.) https://doi.org/10.1163/2589-6229_ESLO_COM_035967 (Brill, London, 2020).
Szmoniewski, B. Ethnogenesis of Slavs viewed from Polish perspective. Soka Univ. Bull. Russ. Slav. Stud. 12, 23–43 (2020).
Google Scholar
Pohl, W. Die Germanen (De Gruyter, 2000).
Halsall, G. Barbarian Migrations and the Roman West, 376–568 (Cambridge Univ. Press, 2007).
Meier, M. Geschichte Der Völkerwanderung: Europa, Asien Und Afrika, Vol. 3 (C. H. Beck, 2019).
Pohl, W. Die Völkerwanderung. Eroberung Und Integration (Kohlhammer, 2002).
Wolfram, H. History of the Goths (Univ. California Press, 1990).
Wolfram, H. Gotische Studien. Volk Und Herrschaft Im Frühen Mittelalter. (C. H. Beck, 2005).
Castritius, H., Geuenich, D. & Werner, M. Die Frühzeit Der Thüringer: Archäologie, Sprache, Geschichte, Vol. 63 (De Gruyter, 2009).
Muhl, A. & Schwarz, R. Kulturenstreit. Frühmittelalter Zwischen Harz Und Elbe, Vol. 9 (Landesamt f. Denkmalpflege u. Archäologie Sachsen-Anhalt, 2023).
Muhl, A. & Schwarz, R. Königsdämmerung—Das Frühmittelalterliche Thüringerreich, Vol. 8 (Landesamt f. Denkmalpflege u. Archäologie Sachsen-Anhalt, 2022).
Bemmann, J. in Die Frühzeit der Thüringer (eds Castritius, H., Geuenich, D. & Werner, M.) 63–82 (De Gruyter, 2009).
Brachmann, H. Slawische Stämme an Elbe Und Saale. Zu Ihrer Geschichte Und Kultur Im 6. Bis 10. Jahrhundert—Auf Grund Archäologischer Quellen, Vol. 32 (Akademie-Verlag, 1978).
Parczewski, M. Origins of early Slav culture in Poland. Antiquity 65, 676–683 (1991).
Google Scholar
Urbańczyk, P. (ed.) Nie-Słowianie o Początkach Słowian. Mała Biblioteka Poznańskiego Towarzystwa Przyjaciół Nauk, 18 (Poznańskie Towarzystwo Przyjaciół Nauk, Poznań, 2006).
Godłowski, K. Frühe Slawen in Mitteleuropa. Schriften von Kazimierz Godłowski, Vol. 6 (Wachholtz, Neumünster, 2005).
Kaczanowski, P. & Parczewski, M. (eds) Archeologia O Początkach Słowian. Materiały Z Konferencji, Kraków, 19-21 Listopada 2001 (Kraków, Instytut Archeologii Uniw. Jagiellońskiego, 2005).
Curta, F. in Migration Histories of the Medieval Afroeurasian Transition Zone 101–138 (Brill, 2020).
Curta, F. Slavs in the Making History, Linguistics, and Archaeology in Eastern Europe (ca. 500–ca. 700) (Routledge, 2021).
Kara, M. Archaeology, mainly Polish, in the current discussion on the ethnogenesis of the Slavs. Slavia Antiqua 63, 66–128 (2022).
Google Scholar
Curta, F. Migration and common Slavic. Critical remarks of an archaeologist. Linguistica Brunensia 74, 41–56 (2024).
Google Scholar
Kushniarevich, A. et al. Genetic heritage of the Balto-Slavic speaking populations: a synthesis of autosomal, mitochondrial and Y-chromosomal data. PLoS ONE 10, e0135820 (2015).
PubMed PubMed Central Google Scholar
Olalde, I. et al. A genetic history of the Balkans from Roman frontier to Slavic migrations. Cell 186, 5472–5485.e9 (2023).
CAS PubMed PubMed Central Google Scholar
Peltola, S. et al. Genetic admixture and language shift in the medieval Volga-Oka interfluve. Curr. Biol. 33, 174–182.e10 (2023).
CAS PubMed Google Scholar
Stolarek, I. et al. Genetic history of East-Central Europe in the first millennium ce. Genome Biol. 24, 173 (2023).
PubMed PubMed Central Google Scholar
Barford, P. M. The Early Slavs: Culture and Society in Early Medieval Eastern Europe (Cornell Univ. Press, 2001).
Lübke, C. in Neue Wege der Frühmittelalterforschung. Bilanz und Perspektive (eds Pohl, W., Diesenberger, M. & Zeller, B.) 323–338 (Verlag der Österreichischen Akademie der Wissenschaften, 2018).
Brather, S. Archäologie Der Westlichen Slawen. Siedlung, Wirtschaft Und Gesellschaft Im Früh- Und Hochmittelalterlichen Ostmitteleuropa, Vol. 61 (De Gruyter, 2008).
Gross, A. et al. Population-genetic comparison of the Sorbian isolate population in Germany with the German KORA population using genome-wide SNP arrays. BMC Genet. 12, 67 (2011).
CAS PubMed PubMed Central Google Scholar
Antonio, M. L. et al. Stable population structure in Europe since the Iron Age, despite high mobility. eLife 13, e79714 (2024).
CAS PubMed PubMed Central Google Scholar
Antonio, M. L. et al. Ancient Rome: a genetic crossroads of Europe and the Mediterranean. Science 366, 708–714 (2019).
ADS CAS PubMed PubMed Central Google Scholar
Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).
ADS CAS PubMed PubMed Central Google Scholar
Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).
ADS CAS PubMed PubMed Central Google Scholar
Schmid, C. & Schiffels, S. Estimating human mobility in Holocene Western Eurasia with large-scale ancient genomic data. Proc. Natl Acad. Sci. USA 120, e2218375120 (2023).
CAS PubMed PubMed Central Google Scholar
Amorim, C. E. G. et al. Understanding 6th-century barbarian social organization and migration through paleogenomics. Nat. Commun. 9, 3547 (2018).
ADS PubMed PubMed Central Google Scholar
Vyas, D. N. et al. Fine-scale sampling uncovers the complexity of migrations in 5th–6th century Pannonia. Curr. Biol. 33, 3951–3961.e11 (2023).
CAS PubMed Google Scholar
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).
CAS PubMed PubMed Central Google Scholar
Wang, K. et al. Ancient DNA reveals reproductive barrier despite shared Avar-period culture. Nature 638, 1007–1014 (2025).
CAS PubMed PubMed Central Google Scholar
Ringbauer, H. et al. Accurate detection of identity-by-descent segments in human ancient DNA. Nat. Genet. 56, 143–151 (2023).
PubMed PubMed Central Google Scholar
Ralph, P. & Coop, G. The geography of recent genetic ancestry across Europe. PLoS Biol. 11, e1001555 (2013).
CAS PubMed PubMed Central Google Scholar
Al-Asadi, H., Petkova, D., Stephens, M. & Novembre, J. Estimating recent migration and population-size surfaces. PLoS Genet. 15, e1007908 (2019).
PubMed PubMed Central Google Scholar
Stolarek, I. et al. Goth migration induced changes in the matrilineal genetic structure of the central-east European population. Sci. Rep. 9, 6737 (2019).
ADS CAS PubMed PubMed Central Google Scholar
Kokowski, A. Gothic migrations: in search of the truth. Praehist. Z. 97, 313–323 (2022).
Google Scholar
Veeramah, K. R. et al. Genetic variation in the Sorbs of eastern Germany in the context of broader European genetic diversity. Eur. J. Hum. Genet. 19, 995–1001 (2011).
PubMed PubMed Central Google Scholar
Higounet, C. Die Deutsche Ostsiedlung Im Mittelalter (Siedler, 1986).
Bünz, E. Ostsiedlung Und Landesausbau in Sachsen. Die Kührener Urkunde von 1154 Und Ihr Historisches Umfeld, Vol. 23 (Leipziger Univ., 2008).
Lübke, C. in The Making of Medieval History (eds Loud, G. A. & Staub, M.) 167–183 (York Medieval Press, 2017).
Mittnik, A. et al. The genetic prehistory of the Baltic Sea region. Nat. Commun. 9, 442 (2018).
ADS PubMed PubMed Central Google Scholar
Saag, L. et al. The arrival of Siberian ancestry connecting the Eastern Baltic to Uralic speakers further east. Curr. Biol. 29, 1701–1711.e16 (2019).
CAS PubMed PubMed Central Google Scholar
de Gennaro, L. et al. PANE: fast and reliable ancestral reconstruction on ancient genotype data with non-negative least square and principal component analysis. Genome Biol. 26, 29 (2025).
PubMed PubMed Central Google Scholar
Speidel, L. et al. High-resolution genomic history of early medieval Europe. Nature 637, 118–126 (2025).
Chintalapati, M., Patterson, N. & Moorjani, P. The spatiotemporal patterns of major human admixture events during the European Holocene. eLife 11, e77625 (2022).
PubMed PubMed Central Google Scholar
Pronk, T. in The Indo-European Language Family. A Phylogenetic Perspective (ed. Olander, T.) 269–292 (Cambridge Univ. Press, 2022).
Villanueva Svensson, M. The Rise of Acuteness in Balto-Slavic (Brill, 2023).
Derksen, R. in Encyclopedia of Slavic Languages and Linguistics Online (ed. Greenberg, M. L.) https://doi.org/10.1163/2589-6229_ESLO_COM_032140 (Brill, London, 2020).
Matasović, R. Toward a relative chronology of the earliest Baltic and Slavic sound changes. Baltistica 40, 147–157 (2005).
Google Scholar
Young, S. in The Indo-European Languages (ed. Kapović, M.) 479–485 (Routledge, 2017).
Jasanoff, J. H. The Prehistory of the Balto-Slavic Accent (Brill, 2017).
Petit, D. Balto-Slavic. in Handbook of Comparative and Historical Indo-European Linguistics (eds Klein, J., Joseph, B. & Fritz, M.) 1960–1973 (De Gruyter Mouton, 2018).
Olander, T. Proto-Slavic Inflectional Morphology (Brill, 2015).
Hellenthal, G. et al. A genetic atlas of human admixture history. Science 343, 747–751 (2014).
ADS CAS PubMed PubMed Central Google Scholar
Barbieri, C. et al. A global analysis of matches and mismatches between human genetic and linguistic histories. Proc. Natl Acad. Sci. USA 119, e2122084119 (2022).
CAS PubMed PubMed Central Google Scholar
Gnecchi-Ruscone, G. A. et al. Network of large pedigrees reveals social practices of Avar communities. Nature 629, 376–383 (2024).
ADS CAS PubMed PubMed Central Google Scholar
Gretzinger, J. et al. The Anglo-Saxon migration and the formation of the early English gene pool. Nature 610, 112–119 (2022).
ADS CAS PubMed PubMed Central Google Scholar
Macháček, J. et al. Runes from Lány (Czech Republic)—The oldest inscription among Slavs. A new standard for multidisciplinary analysis of runic bones. J. Archaeol. Sci. 127, 105333 (2021).
Google Scholar
Bichlmeier, H. in New Perspectives on the Early Slavs and the Rise of Slavic: Contact and Migration (eds Klír, T., Boček, V. & Jansens, N.) 43–76 (Univ. Winter, 2000).
Donat, P. & Fischer, R. E. Die Anfänge slawischer Siedlung westlich der Oder. Methodische Überlegungen zu Problemen aktueller archäologischer und onomastischer Forschungen. Jahrb. Brandenbg. Landesgesch. 45, 7–30 (1994).
Google Scholar
Leube, A. Germanische Völkerwanderungen und ihr archäologischer Fundniederschlag II. Slawisch-germanische Kontakte im nördlichen Elb-Oder-Gebiet. Ethogr. Archäol. Z. 36, 259–298 (1996).
Google Scholar
Bursche, A., Hines, J. & Zapolska, A. (eds) The Migration Period between the Oder and the Vistula. East Central and Eastern Europe in the Middle Ages (Brill, 2020).
Biermann, F. in Die Frühen Slawen—Von der Expansion zu Gentes und Nationes, Vol. 81 (eds Biermann, F., Kersting, T. & Klammt, A.) 9–26 (Beier und Beran, 2016).
Dulinicz, M. Frühe Slawen Im Gebiet Zwischen Unterer Weichsel Und Elbe. Eine Archäologische Studie (Wachholtz, Neumünster, 2006).
Gnecchi-Ruscone, G. A. et al. Ancient genomes reveal origin and rapid trans-Eurasian migration of 7th century Avar elites. Cell 185, 1402–1413.e21 (2022).
CAS PubMed PubMed Central Google Scholar
Fortes-Lima, C. A. et al. The genetic legacy of the expansion of Bantu-speaking peoples in Africa. Nature 625, 540–547 (2024).
ADS CAS PubMed Google Scholar
Heggarty, P. et al. Language trees with sampled ancestors support a hybrid model for the origin of Indo-European languages. Science 381, eabg0818 (2023).
CAS PubMed Google Scholar
Patterson, N. et al. Large-scale migration into Britain during the Middle to Late Bronze Age. Nature 601, 588–594 (2021).
ADS PubMed PubMed Central Google Scholar
Mallick, S. et al. The Allen Ancient DNA Resource (AADR) a curated compendium of ancient human genomes. Scientific Data 11, 182 (2024).
PubMed PubMed Central Google Scholar
Orfanou, E., Himmel, M., Aron, F. & Haak, W. Minimally-invasive sampling of pars petrosa (os temporale) for ancient DNA extraction V.2. protocols.io https://doi.org/10.17504/protocols.io.bqd8ms9w (2020).
Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kbp). Radiocarbon 62, 725–757 (2020).
CAS Google Scholar
Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37, 425–430 (1995).
CAS Google Scholar
Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).
ADS CAS PubMed PubMed Central Google Scholar
Korlević, P. et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques 59, 87–93 (2015).
ADS PubMed Google Scholar
Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).
CAS PubMed Google Scholar
Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).
CAS PubMed Google Scholar
Gansauge, M.-T. & Meyer, M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat. Protoc. 8, 737–748 (2013).
PubMed Google Scholar
Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).
PubMed Google Scholar
Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA. Phil. Trans. R. Soc. B 370, 20130624 (2015).
PubMed PubMed Central Google Scholar
Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).
ADS CAS PubMed PubMed Central Google Scholar
Peltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).
PubMed PubMed Central Google Scholar
Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).
PubMed PubMed Central Google Scholar
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
CAS PubMed PubMed Central Google Scholar
Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).
PubMed PubMed Central Google Scholar
Mittnik, A., Wang, C.-C., Svoboda, J. & Krause, J. A molecular approach to the sexing of the triple burial at the Upper Paleolithic Site of Dolní Věstonice. PLoS ONE 11, e0163019 (2016).
PubMed PubMed Central Google Scholar
Lamnidis, T. C. et al. Ancient Fennoscandian genomes reveal origin and spread of Siberian ancestry in Europe. Nat. Commun. 9, 5018 (2018).
ADS PubMed PubMed Central Google Scholar
Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014).
PubMed PubMed Central Google Scholar
Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015).
PubMed PubMed Central Google Scholar
Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).
ADS CAS PubMed PubMed Central Google Scholar
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
PubMed PubMed Central Google Scholar
Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).
PubMed PubMed Central Google Scholar
Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016).
CAS PubMed PubMed Central Google Scholar
Link, V. et al. ATLAS: analysis tools for low-depth and ancient samples. Preprint at bioRxiv https://doi.org/10.1101/105346 (2017).
Rubinacci, S., Ribeiro, D. M., Hofmeister, R. J. & Delaneau, O. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 53, 120–126 (2021).
CAS PubMed Google Scholar
Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).
CAS PubMed PubMed Central Google Scholar
Browning, B. L., Tian, X., Zhou, Y. & Browning, S. R. Fast two-stage phasing of large-scale sequence data. Am. J. Hum. Genet. 108, 1880–1890 (2021).
CAS PubMed PubMed Central Google Scholar
z, A. et al. Imputed genomes and haplotype-based analyses of the Picts of early medieval Scotland reveal fine-scale relatedness between Iron Age, early medieval and the modern people of the UK. PLoS Genet. 19, e1010360 (2023).
CAS PubMed PubMed Central Google Scholar
Browning, B. L. & Browning, S. R. Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics 194, 459–471 (2013).
PubMed PubMed Central Google Scholar
Margaryan, A. et al. Population genomics of the Viking world. Nature 585, 390–396 (2020).
ADS CAS PubMed Google Scholar
Kennett, D. J. et al. Archaeogenomic evidence reveals prehistoric matrilineal dynasty. Nat. Commun. 8, 14115 (2017).
ADS CAS PubMed PubMed Central Google Scholar
Rohrlach, A. B. et al. BREADR: an R package for the Bayesian estimation of genetic relatedness from low-coverage genotype data. J. Open Source Softw. 10, 7916 (2025).
Google Scholar
Popli, D., Peyrégne, S. & Peter, B. M. KIN: a method to infer relatedness from low-coverage ancient DNA. Genome Biol. 24, 10 (2023).
CAS PubMed PubMed Central Google Scholar
Lipatov, M., Sanjeev, K., Patro, R. & Veeramah, K. R. Maximum likelihood estimation of biological relatedness from low coverage sequencing data. Preprint at bioRxiv https://doi.org/10.1101/023374 (2015).
Ringbauer, H., Novembre, J. & Steinrücken, M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun. 12, 5425 (2021).
ADS CAS PubMed PubMed Central Google Scholar
Morrison, M. L., Alcala, N. & Rosenberg, N. A. FSTruct: an FST-based tool for measuring ancestry variation in inference of population structure. Mol. Ecol. Resour. 22, 2614–2626 (2022).
PubMed PubMed Central Google Scholar
Browning, S. R. & Browning, B. L. Accurate non-parametric estimation of recent effective population size from segments of identity by descent. Am. J. Hum. Genet. 97, 404–418 (2015).
CAS PubMed PubMed Central Google Scholar
Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).
PubMed PubMed Central Google Scholar
Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).
PubMed PubMed Central Google Scholar
Reich, D. et al. Reconstructing Native American population history. Nature 488, 370–374 (2012).
ADS CAS PubMed PubMed Central Google Scholar
Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197–203 (2018).
ADS CAS PubMed PubMed Central Google Scholar
Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).
CAS PubMed PubMed Central Google Scholar
Novotná, P. & Blažek, V. Glottochronology and its application on the Balto-Slavic languages. Baltistica 42, 185–210 (2007).
Google Scholar
إقرأ المزيد